High Resolution Superconducting Detectors

Kent Irwin NIST, Boulder, CO

Detectors

Microcalorimeters
Transition-Edge Sensors (TES)
SIS Tunnel Junctions (STJ)
(Stephan Friedrich, LLNL)

Current Performance

Energy Resolution Count Rate Spectral Quality

The Future

Large Format Arrays

Microcalorimeters

- Resolves single photons
- Good energy resolution (a few eV) when operated at low temperature (~ 0.1 K)

Transition-Edge Sensors

Superconducting Transition-Edge Sensor (TES)

Molybdenum-Copper Bilayer

- A bilayer of a thin superconducting film and a thin normal metal acts as a single superconductor with a tunable T_c - the "proximity effect"
- Molybdenum-copper
 Robust and temperature stable
 Molybdenum
 Tc ~ .92 K
 Copper
 normal
 - Sharp
 - Reproducible
- <~ 5 mK

- Tunable
- Robust

Transition-Edge Sensor X-Ray Microcalorimeter

NST

TES X-Ray Microcalorimeter

2.0 eV resolution at 1.5 keV

4.5 eV resolution at 6 keV

Resolving Peak Overlaps

NIST's TES x-ray microcalorimeters are being used to solve critical microanalysis problems for the semiconductor industry, such as contaminant particle identification.

NIST's single-pixel TES microcalorimeter technology is now being commercialized in the U.S. by **NORAN** and **EDAX**.

Technology Administration, U.S. Department of Commerce

Chemical Shift in Al - Al₂O₃

- Chemical bonding state causes small (< 1 eV) shifts in x-ray line position
- Industrially important problem: Al particles on oxide substrates.

Al oxide particle

Al particle

NST

rce

Particle samples provided by Alain Diebold (SEMATECH)

Chemical Shift Map

10µm 2000X

Al oxide Al

Superconducting Tunnel Junctions

Small energy gap (meV) \Rightarrow high resolution (<10 eV) Fast charge decay (few μ s) \Rightarrow high count rate (10⁴ cps)

Synchrotron X-Ray Fluorescence Data

Hydrogenase: 480 ppm Ni

L-edge absorption spectra

Achieved Energy Resolution

- For visible photons, TES and SIS have similar energy resolution and count rate.
- For soft x-ray, TES has $\sim 5 \times$ better energy resolution; SIS has $\sim 10 \times$ higher count rate

TES		
E	ΔE	
• 2.0 eV	0.12 eV	(Stanford)
• 1.5 keV	2.0 eV	(NASA/GSFC)
• 3.3 keV	3.7 eV	(NASA/GSFC)
• 6 keV	4.5 eV	(NIST)
• 60 keV	70 eV	(LLNL)
(TES co	nnected to tl	nick Sn absorber)

SIS		
<u>E</u>	ΔE	
• 1.0 eV	0.13 eV	(ESA)
• 50 eV	1.7 eV	(LLNL)
• 200 eV	4.5 eV	(LLNL)
• 1 keV	8.9 eV	(LLNL)
• 6 keV	24 eV	(LLNL)

STJ High Count Rate Performance

0.25 μs shaping time No pile-up rejection

TES X-Ray Count Rate

SIS Spectral purity

SIS response to 700 eV x-rays generated using an x-ray monochromator at SSRL

J.B. le Grand et. al., *Appl. Phys. Lett.* 73, 1295 (1998).

- Up to 600 eV, absorption is in top electrode, and the peak is an accurate Gaussian.
- For 650 1000 eV, the central line is Gaussian, an extra bump due to base-electrode events occurs above the peak, and a tail due to spatial inhomogeneities extends below the peak. The rest of the spectrum is clean, and free of artifacts.
- Above 1 keV, significant artifacts occur due to base electrode and substrate events.
- The base-electrode hits can sometimes be removed by a risetime veto-

Technology Administration, U.S. Department of Commerce

TES Spectral purity

- Spectral purity of TES studied by comparing to spectrum of same sample taken by WDS (Bragg Crystal Diffraction.)
- Efficiency varies across spectrum due to bismuth absorber efficiency and Al-coated parylene windows.
- Escape peaks present, as expected
- Otherwise, detector response is accurately modeled as Gaussian (WDS is Lorentzian).

The Future: Large Format Arrays

- Increase count rate
- Provide imaging information
- Increase area

Elevated, surface micromachined platform for microcalorimeter

Bulk micromachined microcalorimeter structure (artist's conception)

Overhanging absorbers

Bi/Cu absorber

Bi/Cu absorber

32×32 array of overhanging bismuth absorber structures fabricated at NASA/GSFC

SQUID Multiplexer for TES Arrays

- Multiplexing is necessary for large-format arrays
- Ultra-low power SQUID amplifiers can be operated in the focal plane
- SQUID MUX turns a column of SQUIDs on one at a time
- With proper engineering, no significant loss in single-pixel performance
- Scalable to > 10,000 pixel arrays with ~ 100 readout channels

Photometric response of multiplexed 8-pixel TES array

8-channel SQUID multiplexer

- 8-pixel, multiplexed TES bolometer array
- Output demultiplexed into 8 software channels
- Array exposed to chopped IR signal

Some Array Projects

Existing (or nearly so)

- S-Cam: 6 × 6 array of visible SIS (tested on *William Herschel Telescope*) [ESA]
- 4-pixel TES visible array (tested at *MacDonald Observatory*) [Stanford, NIST]
- 9-pixel SIS soft x-ray array being assembled [LLNL]
- FIBRE: 16-pixel, MUXed TES IR bolometer array (at CSO in 2/2001) [NASA/GSFC, NIST]

Longer term, funded array projects

- SAFIRE: 12x24 MUXed TES IR bolometer array (first-light SOFIA instrument: 2002-2003) [NASA/GSFC, NIST]
- SCUBA-2: >10,000 pixel TES IR bolometer array On the JCMT in 2006. [UK ATC, NIST]
- Constellation-X: 32 × 32 multiplexed TES soft x-ray array (on-orbit in 2008). [too many to list]

Summary of Soft X-Ray Performance

TES

- Soft x-ray single-pixel count rate <~
 1 kcps
- Excellent resolution
- Area: \sim 400 µm × 400 µm per pixel
- Good spectral quality
- Arrays · Better imaging, resolution, area Compatible with MUX

Goal: Multiplexed, 1000-pixel array with 100-1,000 kcps

SIS

- Soft x-ray single-pixel count rate >~ 10 kcps (~ 10× higher than TES)
- Good resolution ($\sim 5 \times$ less than TES)
- 50 μ m × 50 μ m to 200 μ m × 200 μ m (most results 100 μ m × 100 μ m).
- Spectral quality

 Good below 600 eV

 Good above with substrate/electrode veto?
- Arrays Setter count rate

 Need MUX

 Now building 9-pixel array with

 ~100 kcps

 Goal: 100-pixel array, ~1,000 kcps

The direction of both technologies will be influenced by the needs of the synchrotron community

